Pages Navigation Menu

Противопожарная безопасность светопрозрачных фасадов. Часть 1

2 декабря 1936 года лондонское радио принесло известие, которое в первый момент показалось малоправдоподобным

В течение одной ночи в лондонском предместье Сендейхеме пожаром было уничтожено одно из самых ярких знаковых сооружений XIX столетия — знаменитый Хрустальный Дворец «Наутро, — добавляла краткая радиограмма, — от огромного здания осталась лишь груда железных балок и масса расплавленного стекла». Однако впечатляющая картина разрушения вызвала у современников всего лишь кратковременный всплеск эмоций.Впереди была Вторая мировая война, бурный расцвет послевоенного строительства, расцвет и отторжение Интернационального стиля отодвинули противопожарную безопасность подобных сооружений на задний план. Требования современных нормативов TRAV и TRVL относятся к режиму нормальной эксплуатации здания без учёта экстремальных условий при возникновении пожара. Вместе с тем, проблема разрушения лёгких пространственных сооружений из стекла и металла при пожаре, сегодня также актуальна для человечества, как и несколько столетий назад. Теракт 11 сентября 2001 года, приведший к быстрому прогрессирующему обрушению знаменитых башен-близнецов Всемирного торгового Центра, заставил профессиональное строительное сообщество переосмыслить не только саму идею возведения небоскрёбов, но и приступить к разработке новой концепции безопасности административных зданий. На сегодняшний день очевидно, что она ещё не сформирована до конца. А, применительно к объектам «стеклянной архитектуры», мнения специалистов в различных странах носят весьма противоречивый характер. Для оценки способности конструкции сопротивляться воздействию огня, в строительной технике используется показатель предела огнестойкости, характеризующий время (выражаемое в норматиных документах в минутах), в течение которого конструкция при стандартном воздействии огня (огневом испытании при стандартном температурном режиме) и высоких температур сохраняет несущую способность и устойчивость, не даёт сквозных трещин, а температура на необогреваемой её поверхности не превышает в среднем 140 °С. Пределы огнестойкости строительных конструкций Согласно действующим нормативным документам, предел огнестойкости строительных конструкций оценивается по нескольким группам предельных состояний (RIEW): R — потеря несущей способности (обрушение или потеря устойчивости); I — потеря теплоизолирующей способности (повышение температуры на необогреваемой поверхности сверх допустимой); E — потеря целостности — (образование в конструкции сквозных трещин или отверстий, через которые в соседнее помещение проникают продукты горения или пламя); W — достижение предельной величины теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (избыточпная тепловая радиация от раскалённого ограждения)Необходимо отметить, что нормативная база, обеспечивающая корректное применение той или иной группы предельных состояний для оценки предела огнестойкости светопрозрачных фасадов и большепролётных кровельных покрытий, в РФ не разработана до конца. Очевидно, что основным критерием проектирования в данном случае является обеспечение безопасной эвакуации людей из здания/прилегающей территории до момента прогрессирующего обрушения кровли/навесной фасадной оболочки (или её части).В практической деятельности предел огнестойкости светопрозрачных конструкций, как правило, оценивается по группе Е — потеря целостности. Разрушение стёкол в окнах, фасадном остеклении или кровле, определяет важнейший этап развития пожара. До тех пор, пока наружная светопрозрачная оболочка сохраняет целостность, развитие пожара происходит за счёт кислорода, находящегося в объёме помещения, по мере расходования которого интенсивность горения начинает снижаться. Вскрытие светопроёмов при разрушении стёкол полностью изменяет картину газообмена в помещении. Вместе с удалением продуктов горения происходит резкий приток кислорода с наружным воздухом, в результате чего процесс горения интенсифицируется. Точный момент времени, и условия, при которых происходит разрушение стекла при пожаре предсказать практически невозможно. Если стекло подвергается нагреву лучистым и конвективным теплом, но не подвержено прямому воздействию пламени, оно нагревается относительно медленно, и может выдерживать достаточно долгий нагрев, не разрушаясь. Разрушение стекла в световых проёмах начинается почти сразу после того, как пламя начинает касаться его поверхности. По различным данным, обычное листовое оконное стекло разрушается
через 3–4 мин после начала действия огня вследствие возникновения неравномерных температурных напряжений. Испытания закалённого стекла, проведённые во ВНИИПО показали, что 5-ти миллиметровое закалённое стекло размером 1,3 x 1,9 м выдерживало нагревание без повреждений вначале за счёт влияния высоких сжимающих напряжений у поверхности. Через 10–15 мин стекло равномерно прогревалось на всю толщину, становилось пластичным и не разрушалось на этой стадии за счёт выравнивания напряжений по сечению пластины. Предел огнестойкости испытанного стекла наступал вследствие размягчения и выпадения стёкол и составлял 15–25 минут.Результаты испытаний показали, что описанная картина имела место при условии установки стекла в стальной переплёт с зазорами 3–5 мм. При установке закалённого стекла в переплёт вплотную, оно разрушалось через 3–6 мин после начала огневого воздействия.Вследствие температурного расширения стекла, его незащищённые кромки упирались в переплёты или крепёжные детали с возникновением локальных концентрированных напряжений, приводивших к мгновенному возникновению трещин и разрушению пластины. Гораздо более высокие показатели остаточной несущей способности демонстрировало армированное стекло, которое через 1 мин после начала действия огня при температуре около 200 °С начинало растрескиваться, однако сквозныхраскрытых трещин в нём не образовывалось. Растрескивание прекращалось через 7 мин при температуре 620 °С. Через 30–40 мин огневого воздействия армированное стекло размягчалось, деформировалось и постепенно выходило из креплений. При температуре около 870 °С деформация стекла увеличивалась настолько, что оно под действием собственного веса выпадало из переплётов — наступал предел огнестойкости. Его величина составляла в среднем 0,75 ч для одинарного остекления и 1,2 ч для раздельного листового остекления. В ассортименте современных производителей огнестойких стёкол, присутствуют не только армированное флоат-стекло и закалённое стекло со специальными параметрами закалки, но и так называемые многослойные огнестойкие стёкла с одним или несколькими твёрдыми промежуточными слоями, расширяющимися под действием огня. Материал промежуточного слоя получают путем сушки прозрачного водного раствора, содержащего жидкое стекло на основе силиката щелочного металла, водорастворимый алюминат и гидроксикарбоновую кислоту и др. При воздействии огня такой промежуточный слой вспучивается и расширяется, образуя непрозрачную изолирующую пену, которая обеспечивает термически изолирующий слой, повышающий устойчивость многослойной стеклянной панели к воздействию мощного теплового излучения. В нормальных условиях промежуточный слой прозрачен. При пожаре под действием высоких температур он превращается в непрозрачный изолирующий пеноматериал, обеспечивающий дополнительный теплоизоляционный эффект. Применение огнезащитных стёкол в конструкции фасадной оболочки позволяет повысить время сохранения её целостности в условиях пожара, однако не является эффективным без применения специальных огнезащитных профильных систем, конструкция которых препятствует распространению огня внутри полых камер профиля. Современные решения огнестойких профильных систем, предлагаемых крупными европейскими производителями, предполагают заполнение камер внутри профилей несгораемыми композитными материалами, позволяющими повысить предел огнестойкости силовой структуры стеклянного фасада до 30–90 мин.Подписи под рисунками:Рис. 1. Многослойное стекло с расширяющимися промежуточными слоямиРис. 2. Образцы огнестойкого многослойного стекла AGC Pyrabel после воздействия огня Рис. 3. Конструктивное решение огнестойкого светопрозрачного алюминиевого фасада с пределом огнестойкости 60 минут. Заполнением внутренних камер профилей несгораемым композитным материалом система SCHUCO FW50+ FV60 и многослойное огнестойкое внутреннее стекло. 1 — алюминиевый профиль, 2 — огнестойкие изоляторы в полых камерах профиля, 3 — огнестойкое стекло, 4 — лента, вспенивающаяся на изоляторе винтового канала от превышения температуры, 5 — прижимная планка стальная, 6 — подкладка под стеклопакет, выполненная из твердых материаловРис. 4. Развитие пожара в здании не оборудованном системами дымоудаления. Отравление человека продуктами сгорания при пожареРис. 5. Удаление продуктов сгорания через светопрозрачные конструкции, оборудованные системой дымоудаления.Открывающиеся фрамуги в светопрозрачной кровле с автоматически у